
The C/C++ Memory Model:
Overview and Formalization

Mark Batty Jasmin Blanchette Scott Owens
Susmit Sarkar Peter Sewell Tjark Weber

Verification of Concurrent C Programs

C11 /C++11

In 2011, new versions of the ISO standards for C and C++,
informally known as C11 and C++11, were ratified.

These standards define a memory model for C/C++.

Support for this model has recently become available in popular
compilers (GCC 4.4, Intel C++ 13.0, MSVC 11.0, Clang 3.1).

Memory Models

A memory model describes the interaction of threads through
shared data.

Sequential Consistency

“The result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.”

Example (Dekker’s algorithm)

x = 0; y = 0;

x = 1; y = 1;
r1 = y; r2 = x;

assert (r1 == 1 || r2 == 1);

Real Hardware

Real hardware doesn’t run the code that you wrote.

Concurrency in C/C++

I Pthreads

I Hardware model

I C11/C++11

C11/C++11 Concurrency

Simple concurrency:

I Sequential consistency for data-race free code (→ locks).

I Data races cause undefined behavior.

Expert concurrency:

I Atomic memory locations

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

Example (Dekker’s algorithm)

int x(0); int y(0);

x = 1; y = 1;
r1 = y; r2 = x;

1I.e., not ordered by happens-before.

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

Example (Dekker’s algorithm)

int x(0); int y(0);

x = 1; y = 1;
r1 = y; r2 = x;

1I.e., not ordered by happens-before.

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

Example (Dekker’s algorithm)

int x(0); int y(0);

x = 1; y = 1;
r1 = y; r2 = x;

1I.e., not ordered by happens-before.

Data Races

I Two (or more) threads concurrently1 access the same memory
location.

I At least one of the threads writes.

1I.e., not ordered by happens-before.

std :: atomic<T>

Operations:

I x. load(memory order)

I x. store (T, memory order)

Concurrent accesses on atomic locations do not race.1

The memory order argument specifies ordering constraints between
atomic and non-atomic memory accesses in different threads.

1Except during initialization.

std :: memory order

strict

relaxed

seq cst total order (SC for DRF code)

release /acquire }
message passing

release /consume

relaxed no synchronization

std :: memory order seq cst

There is a total order over all seq cst operations. This order
contributes to inter-thread ordering constraints.1

Example (Dekker’s algorithm)

atomic int x(0); atomic int y(0);

x. store (1, seq cst); y. store (1, seq cst);
int r1 = y.load(seq cst); int r2 = x.load(seq cst);

assert (r1 == 1 || r2 == 1);

1Similar to memory order {release | acquire}.

std :: memory order release/acquire

An acquire load makes prior writes to other memory locations
made by the thread that did the release visible in the loading
thread.

Example (message passing)

int data(0); atomic bool flag (false);

// sender // receiver
data = 42; while (! flag . load(acquire))
flag . store (true, release); {};

assert (data == 42);

std :: memory order consume

A consume load makes prior writes to data-dependent memory
locations made by the thread that did the release visible in the
loading thread.

Example (message passing)

int data(0); atomic<int∗> p(0);

// sender // receiver
data = 42; while (p.load(consume) == 0)
p. store (&data, release); {};

assert (∗p == 42);

std :: memory order relaxed

Relaxed operations impose very weak inter-thread ordering
constraints (→ coherence).

Example (message passing)

int data(0); atomic<int∗> p(0);

// sender // receiver
data = 42; while (p.load(consume) == 0)
p. store (&data, release); while (p.load(relaxed) == 0) ;

assert (∗p == 42);

The Formal Model (1)

Program executions consist of memory actions. The program
source determines several relations over these actions.

Example

i n t x = 0 ;
i n t y = (x == x) ;

W x = 0
sb

||

sb

""
R x = 0

sb

!!

R x = 0
sb

}}
W y = 1

The Formal Model (2)

A candidate execution is specified by three relations:

I sc is a total order over all seq cst actions.

I reads-from (rf) relates write actions to read actions at the
same location that read the written value.

I For each atomic location, the modification order (mo) is a
total order over all writes at this location.

From these, various other relations (e.g., happens-before) are
derived. The memory model imposes constraints on these relations.

Coherence

The following are all forbidden.

Program Semantics

Consider all consistent candidate executions.

If at least one of them has a data race,2 the program has
undefined behavior.

Otherwise, its semantics is the set of consistent candidate
executions.

2There are actually several kinds.

Fine Points

I Fences

I Self-satisfying conditionals

I DRF in a SC semantics, but not DRF in C(++)11

atomic int x(0); atomic int y(0);

if (x. load(seq cst) == 1) if (y. load(seq cst) == 1)
atomic init (&y,1); atomic init (&x,1);

CppMem & Nitpick

source code

static semantics

consistent executions

Conclusion and Future Challenges

Since 2011, C and C++ have a memory model.

We have a formal (machine-readable, executable) version of this
memory model.

I Compiler correctness

I Program transformations

I Static analysis

I Dynamic analysis

I Program logics

I Formal verification

I Equivalent models

	The C/C++ Memory Model
	C11/C++11
	Memory Models
	Sequential Consistency
	Real Hardware
	Concurrency in C/C++
	C11/C++11 Concurrency
	Data Races
	std::atomic<T>
	std::memory_order
	std::memory_order_seq_cst
	std::memory_order_release/acquire
	std::memory_order_consume
	std::memory_order_relaxed
	The Formal Model (1)
	The Formal Model (2)
	Program Semantics
	Fine Points
	CppMem & Nitpick
	Conclusion and Future Challenges

