
Pavel Yosifovich

@zodiacon

Concurrency and the

C++ Memory Model

About Me

 Developer, trainer, author, speaker

 Author

Windows Internals 7th edition Part 1 (2017)

WPF 4.5 Cookbook (2012)

Mastering Windows 8 C++ App Development (2013)

 Pluralsight Author (www.pluralsight.com)

 Microsoft MVP

 Blog: http://blogs.Microsoft.co.il/pavely

 Open source projects on GitHub
(http://github.com/zodiacon)

2

http://www.pluralsight.com/
http://blogs.microsoft.co.il/pavely
http://github.com/zodiacon

The C++ Standards

Before the C++11 standard, the C++
standard was C++98

C++03 exists as well, with some fixes for
C++ 98

Since 2011, C++ standards have been
making steady marches every 3 years

C++ 17 is the latest approved C++ standard

C++ 20 is already in the works

3

Concurrency and the C++ Standards

 In the C++ 98 standard, the word “thread” is
never mentioned

Does this mean no threads were used?

 Many different libraries were used for threading

boost, TBB, OpenMP, MFC, …

 Starting from C++ 11

Threads are part of the standard

Including a memory model

Enhancements in C++ 14/17/20

4

Why Concurrency?

Really just two possible reasons

Maximizing performance by the many CPU
cores (and/or GPU threads) on the machine

Structural benefits

Designing for concurrency

Need to think about the problem at hand
before coding begins

Difficult to add concurrency at a later stage
May introduce subtle bugs and increase code complexity

significantly

5

CPUs

 Socket

 Physical chip placed on the motherboard

 Core

 Separate computation unit

 Hardware thread

 Partially separated computational unit (shares some
cache with other HTs within the same core)

 Several of those may be part of a single core

 Hyper-threading

 Intel technology that provides two hardware threads per core

 Similar technology exists in AMD processors

 Logical processor = hardware thread

6

Socket

Core Core

CoreCore

T T T T

T TT T

(Simple?) Example
Summing up matrix elements

(C)2018 Pavel Yosifovich 7

long long SumMatrix1(Matrix<int>& m) {
long long sum = 0;
for (int r = 0; r < m.Rows(); ++r)

for (int c = 0; c < m.Columns(); ++c)
sum += m[r][c];

return sum;
}

long long SumMatrix2(Matrix<int>& m) {
long long sum = 0;
for (int c = 0; c < m.Columns(); ++c)

for (int r = 0; r < m.Rows(); ++r)
sum += m[r][c];

return sum;
}

Row Major

Column Major

Matrix Summation Results
Intel Core i7-7700HQ

Visual Studio 2017 15.6 compiler

x64

8

CPU, Memory and Caches
In earlier days of processors, CPU and memory

speeds were comparable

This is no longer the case

Cache(s) were introduced between CPU
and memory

Cache is small, fast memory

Holds recently accessed data/code

9

CPU Cache Memory

fast slow

Example Cache Hierarchy

10

Core 0
T0

T1

L1 D-Cache

L1 I-Cache

L2 Cache

L3 Cache Main Memory

Core 1
T2

T3

L1 D-Cache

L1 I-Cache

L2 Cache

Core 2
T4

T5

L1 D-Cache

L1 I-Cache

L2 Cache

Core 3
T6

T7

L1 D-Cache

L1 I-Cache

L2 Cache

Cache Sizes and Cache Lines

 Example cache sizes

 L1: 32 KB

 L2: 256 KB

 L3: 8 MB

 Caches don’t work on single byte entities

 Rather, work on cache lines

 Typical size is 64 bytes

 Accessing a single byte reads/writes an entire cache line

 i.e. arrays are fastest as far as hardware is concerned

11

Another Example
Counting the number of even numbers in

an array with parallel threads

(C)2018 Pavel Yosifovich 12

int CountEvenNumbers1(const int* data, int size, int nthreads) {
auto counters_buffer = make_unique<int[]>(nthreads);
auto counters = counters_buffer.get();

int chunk = size / nthreads;
vector<thread> threads;

for (int i = 0; i < nthreads; i++) {
int start = i * chunk;
int end = i == nthreads - 1 ? size : (i + 1) * chunk;

thread t([data, counters](int index, int start, int end) {
for (; start < end; ++start)

if (data[start] % 2 == 0)
++counters[index];

}, i, start, end);

threads.push_back(move(t));
}

for (auto& t : threads)
t.join();

int sum = 0;
for (int i = 0; i < nthreads; i++)

sum += counters[i];
return sum;

}

False Sharing
Sharing cache lines being written by different

threads

13

thread t([data, counters](int index, int start, int end) {
// use local counter
int count = 0;
for (; start < end; ++start)

if (data[start] % 2 == 0)
++count;

// write result just once
counters[index] = count;

}, i, start, end);

Simple(?) Example
What is the value of

b?

5 or 0?

14

int a = 0;
volatile int flag = 0;

thread t1([&]() {
while (flag != 1)

;

int b = a;
cout << "b = " << b << endl;

});

thread t2([&]() {
a = 5;
flag = 1;

});

t1.join();
t2.join();

Some Definitions

 Byte

 Smallest addressable unit of memory

 Memory location

 An object of scalar type (arithmetic, pointer, enum or nullptr_t)

 Or the largest contiguous sequence of non-zero length bit fields

 Thread

 Independent flow of control within the program

 Accessing different memory locations concurrently by different threads is
always safe

 Data race

 When a thread writes to a memory location and another thread reads
from the same memory location at the same time

15

Dekker’s Algorithm

Poor man’s critical section

Can thread 1 and thread 2 enter the
critical section at the same time?

16

flag1 = 1;
if (flag2) {

// back off
}
else {

// enter critical section
}

Thread 1

flag2 = 1;
if (flag1) {

// back off
}
else {

// enter critical section
}

Thread 2

Dekker’s Algorithm Executed

17

CPU 0 CPU 1

Store BufferStore Buffer

Main Memory

flag1 = 1;
if (flag2) …

flag2 = 1;
if (flag1) …

Write 1 to flag1

(sent to store buffer)

Read 0 from flag2

(pass store buffer as it’s

a different memory location)

Write 1 to flag2

(sent to store buffer)

Read 0 from flag1

(pass store buffer as it’s

a different memory location)

Sequential Consistency
 The result of any execution is the same as if

The operation of each thread appears as specified
in program order

Operations of all threads were executed in some
sequential order atomically

18

A

B

T1

C

D

T2

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

SC-DRF

Sequential Consistency may be too strict
to get without significant performance
penalty

Compromise

SC for Data Race Free programs

In other words

If program guarantees no data races

Then compiler/runtime/hardware
guarantee Sequential Consistency

19

Optimizations

 The complier knows

 All memory operations in this thread, what they do,
including any data dependencies

 How to be conservative enough in face of possible aliasing

 The compiler does not know

 Which memory locations are “mutable shared” between
threads

 Even if it did, it wouldn’t know the sharing semantics

 How to be conservative enough in case of possible sharing

 Programmer must somehow let the compiler know

20

Optimization Examples
Example single thread optimizations

21

x = 1;
s = "hello";
x = 2;

s = "hello";
x = 2;

for (int i = 0; i < len; i++)
z += a[i];

r = z;
for (int i = 0; i < len; i++)

r += a[i];
z = r;

s1 = "hello";
s2 = "cruel";
s3 = "thread";

s3 = "thread";
s2 = "cruel";
s1 = "hello";

Data Race Prevention
A data race can be prevented by the following

Reads and writes are performed as atomic
operations (std::atomic<>)

One of the conflicting operations happens-before
another

(C)2018 Pavel Yosifovich 22

int count = 0;

auto inc = [&]() {
for (int i = 0; i < 1000000; i++)

count++;
};

thread t[]{ thread(inc), thread(inc),
thread(inc), thread(inc) };

atomic<int> count = 0;

auto inc = [&]() {
for (int i = 0; i < 1000000; i++)

count++;
};

thread t[]{ thread(inc), thread(inc),
thread(inc), thread(inc) };

Data Race No Data Race

Atomic Operations

 An atomic operation is indivisible

Partial change cannot be observed by any
thread

 If all operations on an object are atomic, a read
operation will receive the initial value of the
object or one of the atomic modifications made to
it

 Conversely, non-atomic operations might be seen
as partial results from other threads

 C++ provides atomic types to perform atomic
operations

23

Atomic Types

 The standard atomic types are defined in the <atomic>
header

Template type is std::atomic<T>

 Many atomic operations within the atomic types use
machine instructions that work atomically on the CPU
level

Some are not (discussed later)

 The is_lock_free() member function indicates
whether such operations use atomic CPU instructions

 std::atomic<> has specializations for specific types

24

std::atomic<> Member Functions

 The standard atomic types are not copyable or assignable in
the conventional sense

 Support assignment operator from a non-atomic
corresponding type

 And an operator T to read the value stored in the atomic

 These are special cases for the load() and store()
functions

 Also support exchange(), compare_exchange_weak()
and compare_exchange_strong()

 Support the compound assignment operators (+= etc.)

 The partial specialization for pointer types also supports the
++ and – operators

25

atomic<> Exchange Operations

 Set a new value and return the old value (atomically)

 If the value is as expected, set to desired value and return true

 Otherwise, return false (and update expected to the current
value)

 compare_exchange_weak() allows for spurious failures

 Always use if in a loop

 The fundamental building block in lock-free programming

(C)2018 Pavel Yosifovich 26

T atomic<T>::exchange(T value)

bool atomic<T>::compare_exchange_strong(T& expected, T desired)

Synchronizing Reads and Writes
Example: reading and writing from different

threads

Why does this work? 27

using namespace std;

vector<int> result;
atomic<bool> ready(false);

void reader_thread() {
while (!ready.load()) {

this_thread::sleep_for(chrono::milliseconds(1));
}
std::cout << "The answer is " << result[0] << endl;

}

void writer_thread() {
result.push_back(42);
ready = true;

}

Acquire and Release

 One way barriers

 Fundamental concepts of software and hardware

 Acquire == read (load) operation

 Release == write (store) operation

 A release store operation makes its prior accesses
visible to a thread performing an acquire load that
pairs with that store

28

acquire

release

The Synchronizes-With Relationship

 Always comes from atomic types

 A “suitably tagged” write operation on a variable
synchronizes-with a read operation on that variable
stored by that write

Or a subsequent atomic write by the same thread

Or a sequence of atomic read-modify-write
operations by any thread, where the value read by
the first thread in the sequence is the value initially
written

 “Suitably tagged” depends on the memory ordering
semantics

29

Synchronizes-With
The ordering imposed by one thread reading a

value that was written by another thread

30

Thread 1

Write X = 1

Thread 2

Read X = 1

Fixed Dekker’s Algorithm

31

#include <atomic>

std::atomic<int> flag1 = 0, flag2 = 0;

void Thread1() {
flag1 = 1;
if (!flag2) {

// enter CS
}
else {

// back off
}

}

void Thread2() {
flag2 = 1;
if (!flag1) {

// enter CS
}
else {

// back off
}

}

Synchronizes-withSynchronizes-with

Memory Ordering for Atomics

 Each operation on the atomic type has an optional memory
ordering argument (memory_order enum)

 Default is memory_order_seq_cst (Sequential Consistency)

 Always used when invoked through the operators

 Store operations can use (memory_order_xxx)

 relaxed, release or seq_cst

 Load operations can use

 relaxed, acquire, consume or seq_cst

 Read-modify-write operations can use any memory order

 relaxed, consume, acquire, release, acq_rel, or
seq_cst

32

Relaxed Memory Order

No global ordering of events

But all operations are still atomic

Threads don’t have to agree on the
sequence of events

Intra thread events still obey happens-
before rules

Better to wrap relaxed operations inside
types that implement them

33

Relaxed Memory Order Example

(C)2018 Pavel Yosifovich 34

#include <atomic>

std::atomic<int> count = 0;

// N workers
void WorkerThread() {

while(…) {
if (…) {

++count;
}

}
}

void main() {
launch_workers();
…
join_workers();
cout << count << endl;

}

#include <atomic>

std::atomic<int> count = 0;

// N workers
void WorkerThread() {

while(…) {
if (…) {

count.fetch_add(1, memory_order_relaxed);
}

}
}

void main() {
launch_workers();
…
join_workers();
cout << count.load(memory_order_relaxed) << endl;

}

Other Memory Ordering Options

 Acquire/release (memory_order_acq_rel)

 Just below SC

Acquire can move above (a previous) release

 Acquire (memory_order_acquire)

Load (read)

 Release (memory_order_release)

 Store (write)

 Consume (memory_order_consume)

Most (all) compilers promote to acquire

Deprecated as of C++ 17 (may be removed in C++ 20)

35

Slightly Relaxed Dekker’s Algorithm

36

#include <atomic>

std::atomic<int> flag1 = 0, flag2 = 0;

void Thread1() {
flag1 = 1;
if (!flag2) {

// enter CS
}
else {

// back off
}

}

void Thread2() {
flag2 = 1;
if (!flag1) {

// enter CS
}
else {

// back off
}

}

#include <atomic>

std::atomic<int> flag1 = 0, flag2 = 0;

void Thread1() {
flag1.store(1, memory_order_release);
if (!flag2.load()) {

// enter CS
}
else {

// back off
}

}

void Thread2() {
flag2.store(1, memory_order_release);
if (!flag1.load()) {

// enter CS
}
else {

// back off
}

}

The Double Checked Locking Algorithm

Classic way to get a singleton object

Fails in today’s systems

37

struct widget {
//...

};

widget* instance = nullptr;
mutex wmutex;

widget* getInstance() {
if (instance == nullptr) {

lock_guard lock(wmutex); // lock_guard<mutex> lock(wmutex) in pre C++17
if (instance == nullptr)

instance = new widget();
}
return instance;

}

Double Checked Locking Algorithm Fixed

Atomicity and ordering provided by

atomics and the memory model

38

struct widget {
//...

};

atomic<widget*> instance = nullptr;
mutex wmutex;

widget* getInstance() {
if (instance == nullptr) {

lock_guard lock(wmutex);
if (instance == nullptr)

instance = new widget();
}
return instance;

}

First check (atomic)

Then acquire lock

Then second check

Then create instance, then assign

Lazy Initialization Alternative

39

atomic<widget*> instance = nullptr;
atomic<bool> create = false;

widget* getInstance() {
if (instance.load() == nullptr) {

if (!create.exchange(true))
instance = new widget(); // construct

else
while (instance.load() == nullptr) {} // spin

}
return instance;

} atomic<widget*> instance = nullptr;
atomic<bool> create = false;

widget* getInstance() {
if (instance.load(memory_order_acquire) == nullptr) {

if (!create.exchange(true))
instance.store(new widget(), memory_order_release);

else
while (instance.load(memory_order_acquire) == nullptr) {}

}
return instance.load(memory_order_acquire);

}

Lazy Initialization with C++ 11

Uses once_flag behind the scenes

40

widget* instance = nullptr;

widget* getInstance() {
static once_flag create;
call_once(create, [] {

instance = new widget();
});
return instance;

}

widget* getInstance() {
static widget instance;
return &instance;

}

Fences

 Also known as memory barriers

 Prevent instruction moving across the barrier in
both directions

 Mostly useful with memory_order_relaxed

 Unrelated to a specific memory location

 Can be used to enforce ordering for non atomic
variables

 Usage: call the atomic_thread_fence function

 Prefer ordering with atomics

41

SC Atomic Implementation by CPU

CPU
Load

Normal / SC atomic

Store

Normal / SC Atomic
Compare-and-Swap (CAS)

x86/x64 mov / mov mov / xchg cmpxchg

IA 64 ld / ld.acq st / st.rel;mf cmpxchg.rel;mf

Power ld / sync;ld;cmp;bc;isync st / sync;st
sync;_loop:lwarx;cmp;bc
_exit;stwcx.;bc
_loop;isync;_exit:

ARM v7 ldr / ldr;dmb str / dmb;str;dmb dmb; (compare-exchange loop)

ARM v8 ldr / ldra str / strl

42

Memory Order Performance by CPU

43

x86/x64 IA64 Power ARM v7 ARM v8

SC-DRF

Ultra Strong

(Fully SC)

Ultra Relaxed

L

S

S
L

S

L

S

L

L S

The volatile Keyword
Volatile in Java & .NET is not the same as C++ volatile

Java/.NET volatile is the same as atomic in C/C++

44

Mutexes

Atomics

Memory barriers

Acquire/release

Inside Memory Model Outside Memory Model

volatile

• Volatile variables are unoptimizable

▪ Best to think of them as “I/O”

Thank You!

