
atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 1

Herb Sutter

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 2

CPU
core

CPU
core

CPU
core

CPU
core

CPU
core

RAM

core core core core

3MB
L2 cache

3MB
L2 cache

core core

3MB
L2 cache

16MB
L3 cache

L1$ L1$ L1$ L1$ L1$ L1$
SB SB SB SB SB SB

RAM

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 3

RAM

core core core core

3MB
L2 cache

3MB
L2 cache

core core

3MB
L2 cache

16MB
L3 cache

L1$ L1$ L1$ L1$ L1$ L1$
SB SB SB SB SB SB

Don’t write a race condition or use non-default
atomics and your code will do what you think.

Unless you:

(a) use compilers/hardware that can have bugs;

(b) are irresistably drawn to pull Random Big Red Levers; or

(c) are one of Those Folks who long to take over the gears in the Machine.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 4

 Q: Does your computer execute the program you wrote?

 Q: Does your computer execute the program you wrote?

 A: What a quaint concept!
 On big iron, contemporary with live Beatles performances.
 On PCs, contemporary with leg warmers.

 Think: Compiler optimization, processor OoO execution, cache coherency.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 5

 Compiler/processor/cache says:

“No, it’s much better to execute a different program.

Hey, don’t complain. It’s for your own good. You really
wouldn’t want to execute that dreck you actually wrote.”

 Sequential consistency (SC): Executing the program you wrote.
 Defined in 1979 by Leslie Lamport as “the result of any execution is the

same as if the reads and writes occurred in some order, and the
operations of each individual processor appear in this sequence in the
order specified by its program”

 Race condition: A memory location (variable) can be simultaneously
accessed by two threads, and at least one thread is a writer.
 Memory location == non-bitfield variable, or sequence of non-zero-

length bitfield variables.

 Simultaneously == without happens-before ordering.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 6

 Hey, sequential consistency (SC) seems great!
“… the result of any execution is the same as if the reads and writes
occurred in some order, and the operations of each individual
processor appear in this sequence in the order specified by its
program”

 But chip/compiler designers can be annoyingly helpful:
 It can be (much) more expensive to do exactly what you wrote.

 Often they’d rather do something else, that could run (much) faster.
 Common reaction: “What do you mean, my program is too slow,

you’ll execute a different program instead…?!”

 Sequential consistency for data race free programs (SC-DRF, or DRF0):
Appearing to execute the program you wrote, as long as you didn’t write a
race condition.
 Defined in 1990 by Sarita Adve and Mark Hill as “a formalization that prohibits

data races in a program. We believe that this allows for faster hardware than an
unconstrained synchronization model, without reducing software flexibility
much, since a large majority of programs are already written using explicit
synchronization operations and attempt to avoid data races.”

 The purpose is to define “a contract between software and hardware where
hardware promises to appear sequentially consistent at least to the software
that obeys a certain set of constraints which we have called the synchronization
model. This definition is analogous to that given by Lamport for sequential
consistency in that it only specifies how hardware should appear to software. …
It allows programmers to continue reasoning about their programs using the
sequential model of memory.”

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 7

 You can’t tell at which level the
transformation happens (usually).

 The only thing you care about is
that your correctly synchronized
program behaves as if:
 memory ops are actually executed in

an order that appears equivalent to
some sequentially consistent inter-
leaved execution of the memory ops
of each thread in your source code;

 including that each write appears to
be atomic and globally visible
simultaneously to all processors.

 Goal: Try to maintain that illusion.

Transformations at all levels are equivalent.

 Can reason about all transformations as
reorderings of source code loads and stores.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 8

 Consider (flags are shared and atomic but unordered, initially zero):
 Thread 1: Thread 2:

flag1 = 1; // a: declare intent flag2 = 1; // c: declare intent
if(flag2 != 0) // b if(flag1 != 0) // d

// resolve contention // resolve contention
else else

// enter critical section // enter critical section

 Q: Could both threads enter the critical region?
 Maybe: If a can pass b, or c can pass d, this breaks.
 Solution 1 (good): Use a suitable atomic type (e.g., Java/.NET “volatile”, C++11

std::atomic<>) for the flag variables.
 Solution 2 (good?): Use system locks instead of rolling your own.
 Solution 3 (problematic): Write a memory barrier after a and c.

Processor 2Processor 1
Write 1
to flag1
(sent to
store
buffer)

Read 0 from flag2
(read allowed to pass
buffered store to
different location)

Flush
buffered
store to
flag1

Store Buffer

flag1 = 1; (1)

if(flag2 != 0) {…}; (3)

Write 1
to flag2
(sent to
store
buffer)

Read 0 from flag1
(read allowed to pass
buffered store to
different location)

Flush
buffered
store to
flag2

Store Buffer

flag2 = 1; (2)

if(flag1 != 0) {…} (4)

Global Memory

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 9

 Can transform this: To this:
x = 1;
y = “universe”; y = “universe”;
x = 2; x = 2;

 Can transform this: To this:
r1 = z;

for(i = 0; i < max; ++i) for(i = 0; i < max; ++i)
z += a[i]; r1 += a[i];

z = r1;

 Can transform this:

x = “life”;
y = “universe”;
z = “everything”;

 Can transform this:

for(i = 0; i < rows; ++i)
for(j = 0; j < cols; ++j)

a[j*rows + i] += 42;

 To this:

z = “everything”;
y = “universe”;
x = “life”;

 To this:

for(j = 0; j < cols; ++j)
for(i = 0; i < rows; ++i)

a[j*rows + i] += 42;

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 10

 What the compiler knows:
 All memory operations in this thread and exactly what they do,

including data dependencies.
 How to be conservative enough in the face of possible aliasing.

 What the compiler doesn’t know:
 Which memory locations are “mutable shared” variables and could

change asynchronously due to memory operations in another thread.
 How to be conservative enough in the face of possible sharing.

 Solution: Tell it.
 Somehow identify the operations on “mutable shared” locations

(or equivalent information, but identifying shared variables is best).

Software MMs have converged on
SC for data-race-free programs (SC-DRF).

Java: SC-DRF required since 2005.

C11 and C++11: SC-DRF default (relaxed == transitional tool).

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 11

You promise

To correctly

synchronize
your program

(no race conditions). “The system” promises

To provide the

illusion of executing

the program
you wrote.

Q: While debugging an optimized build,

have you ever seen pink elephants?

In a race, one thread can see into another
thread with the same view as a debugger.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 12

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

 Transaction = logical operation on related data that maintain an invariant.
 Atomic: All-or-nothing.
 Consistent: Reads a consistent state, or takes data from one consistent state to

another.
 Independent: Correct in the presence of other transactions on the same data.

 Example:
bank_account acct1, acct2;
// begin transaction – ACQUIRE exclusivity
acct1.credit(100);
acct2.debit (100);
// end transaction – RELEASE exclusivity

 Don’t expose inconsistent state (e.g., credit without also debit).

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 13

 Critical region = code that must execute in isolation w.r.t. other program code.
 Used to implement transactions.

 Locks (mut_x is a mutex protecting x):
{ lock_guard<mutex> hold(mut_x); // enter critical region (lock “acquire”)

… read/write x …
} // exit critical region (lock “release”)

 Ordered atomics (whose_turn is a std::atomic<> variable protecting x):
while(whose_turn != me) { } // enter critical region (atomic read “acquires” value)
… read/write x …
whose_turn = someone_else; // exit critical region (atomic write “release”)

 Transactional memory (still research right now, but same idea):
atomic { // enter critical region

… read/write x …
} // exit critical region

 It is flat-out illegal for a system to transform this:
mut_x.lock(); // enter critical region (lock “acquire”)
x = 42;
mut_x.unlock(); // exit critical region (lock “release”)

 To this:
x = 42; // race bait
mut_x.lock(); // enter critical region (lock “acquire”)
mut_x.unlock(); // exit critical region (lock “release”)

 Or this:
mut_x.lock(); // enter critical region (lock “acquire”)
mut_x.unlock(); // exit critical region (lock “release”)
x = 42; // race bait

 No system that plays this kind of dirty trick will be very popular with voters.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 14

 Can transform this:
x = “life”;
mut.lock();

y = “universe”;

mut.unlock();
z = “everything”;

But not this:
z = “everything”; // race bait
mut.lock();

y = “universe”;

mut.unlock();
x = “life”; // race bait

To this:

mut.lock();
z = “everything”;
y = “universe”;
x = “life”;
mut.unlock();

 “One-way barriers”: An “acquire barrier” and a “release barrier.”

 Note: These are fundamental hardware and software concepts.

 More precisely: A release store makes its prior accesses visible to a
thread performing an acquire load that sees (pairs with) that store.

release

acquire









atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 15

release

acquire

full fence

release

acquire

release

acquire

release

acquire

release

acquire

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 16

Memory synchronization actively works against
important modern hardware optimizations.

Want to do as little as possible.

B

L

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 17

Strategy Technique Can affect your
code?

Parallelize
(leverage
compute
power)

Pipeline, execute out of order (“OoO”): Launch expensive memory
operations earlier, and do other work while waiting.

Yes

Add hardware threads: Have other work available for the same CPU core
to perform while other work is blocked on memory.

No *

Cache
(leverage
capacity)

Instruction cache No

Data cache: Multiple levels. Unit of sharing = cache line. Yes

Other buffering: Perhaps the most popular is store buffering, because
writes are usually more expensive.

Yes

Speculate
(leverage
bandwidth,
compute)

Predict branches: Guess whether an “if” will be true. No

Other optimistic execution: E.g., try both branches? No

Prefetch, scout: Warm up the cache. No

* But you have to provide said other work (e.g., software threads) or this is useless!

Sample
Modern CPU

Original Itanium 2 had
211Mt, 85% for cache:

16 KB L1I$ 16 KB L1D$
256 KB L2$ 3 MB L3$

1% of die to compute,
99% to move/store data?

Itanium 2 9050:
Dual-core 24 MB L3$

Source: David Patterson, UC
Berkeley, HPEC keynote, Oct 2004
http://www.ll.mit.edu/HPEC/agendas/
proc04/invited/patterson_keynote.pdf

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 18

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

 Don’t write fences by hand.
 Do make the compiler write barriers for you by using “critical region”

abstractions: Mutexes and std::atomic<> variables.

 Lock acquire/release (hey, even the words are the same!):
mut_x.lock(); // “acquire” mut_x ld.acq mut_x
… read/write x …
mut_x.unlock(); // “release” mut_x st.rel mut_x

 std::atomics: read = acquire, write = release.
while(whose_turn != me) { } // read whose_turn ld.acq whose_turn
… read/write x …
whose_turn = someone_else; // write whose_turn st.rel whose_turn

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 19

 Transitivity/causality: x and y are std::atomic, all variables initially zero.

 Thread 1 Thread 2 Thread 3
g = 1; if(x == 1) if(y == 1)
x = 1; y = 1; assert(g == 1);

 It must be impossible for the assertion to fail – wouldn’t be SC.

 Total store order: x and y are std::atomic and initially zero.

 Thread 1 Thread 2 Thread 3 Thread 4
x = 1; y = 1; if(x==1 && y==0) if(y==1 && x==0)

print(“x first”); print(“y first”);

 It must be impossible to print both messages – wouldn’t be SC.

 Use mutex locks to protect code that reads/writes shared variables.

 Advantage: Locks acquire/release induce ordering and nearly all
reordering/invention/removal weirdness just goes away.
 Locks and atomics add optimization boundaries by marking extra-thread

operations. Otherwise, full intra-thread optimizations ok.

 Race-free code can’t tell the difference.

 Disadvantage: Requires care on every use of the shared variables.
 Races happen when you forget to take a lock, or take the wrong lock.

 Deadlock can happen any time two threads try to take two locks in
opposite orders, and it’s hard to prove that can’t happen.

 Livelock can happen when locks try to “back off” (Chip ‘n’ Dale effect).

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 20

 Special atomic types are automatically safe from reordering:
atomic<int> flag1 = 0, flag2 = 0;

// From Dekker’s algorithm
flag1 = 1;
if(flag2 != 0) { ... }

 Advantage: Just tag the variable, not every place it’s used.

 Disadvantage: Writing correct atomics code is harder than it looks.
 A new ‘lock-free’ algorithm or data structure is a publishable result.

 Some common data structures have no known practical ‘lock-free’
implementation.

 Ordered atomic variables:
 Java and .NET volatile. — Always SC. (NB: Java .lazySet not precisely defined.)

 C++11 atomic<T>, C11 atomic_*. — Default SC. (NB: Not C/C++ volatile!)

 Semantics and operations:
 Each individual read/write is atomic. No torn reads, no locking needed.
 Each thread’s reads/writes are guaranteed to execute in order.
 Special ops: [Compare-and-]swap (CAS). Conceptually atomic execution of:

T atomic<T>::exchange(T desired)
{ T oldval = this->value; this->value = desired; return oldval; }

bool atomic<T>::compare_exchange_strong(T& expected, T desired) {
if(this->value == expected) { this->value = desired; return true; }
expected = this->value; return false;

}

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 21

 In C++11, compare-and-swap  compare_exchange_*.

 Example: if(val.compare_exchange_strong(expected, desired))

 Pronounced:
“Am I the one who gets to change val from expected to desired?”

 Often written in loops  “CAS loop.”

 _weak vs. _strong: _weak allows spurious failures.

 Prefer _weak when you’re going to write a CAS loop anyway.

 Almost always want _strong when doing a single test.

 Fences are explicit “sandbars” against reordering.
flag1 = 1;
mb(); InterlockedExchange(&flag1, 1);

// Linux full barrier (x86 mfence) // Win32 ordered API (x86 
xchg)

if(flag2 != 0) { ... } if(flag2 != 0) { ... }

 Disadvantages:
 Nonportable: Different flavors on different processors.

 Tedious: Have to be written (correctly == differently) at every point of use.

 Error-prone: Hard to reason about. ‘Lock-free’ papers avoid mentioning.

 Performance: Usually too heavy. Standalone barriers are especially pessimized.

 NB: Avoid “barriers” that purport to apply only to one kind of reordering (e.g., compiler),
as reordering can happen at any level. Example: Win32 _ReadWriteBarrier affects only
compiler reordering. (More on this later…)

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 22

 Consider publishing via a widget*.

// Thread 1 // Thread 2
widget* temp = new widget();
global = temp;

global->do_something();
global->do_something_else();

 Q: What synchronization is needed?

 Consider publishing via a widget*.

// Thread 1 // Thread 2
widget* temp = new widget();
global = temp;

global->do_something();
global->do_something_else();

 Q: What synchronization is needed?

 A: “Release” semantics. “Acquire” semantics.

 Q2: What are the rules? What standalone fences will do the job?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 23

 Adding standalone fences to publish via a widget*:
// Thread 1 // Thread 2

widget* temp = new widget();
mb();
global = temp;

temp2 = global;
mb();
temp2->do_something();
temp2 = global;
mb();
temp2->do_something_else();

 Q: What are the usability and performance issues? Discuss.

 Adding standalone fences to publish via a widget*:
// Thread 1 // Thread 2
g = 1;
widget* temp = new widget();
mb();
global = temp; y = 1;
x = g; temp2 = global;

mb();
temp2->do_something();
temp2 = global;
mb();
temp2->do_something_else();
y = g;

 Q: What are the usability and performance issues? Discuss.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 24

 Adding standalone fences to publish via a widget*:
// Thread 1 // Thread 2
g = 1;
widget* temp = new widget();
mb();
global = temp; y = 1;
x = g; temp2 = global;

mb();
temp2->do_something();
temp2 = global;
mb();
temp2->do_something_else();
y = g;

 Q: What are the usability and performance issues? Discuss.

Need fence because g “might” exist –
data dependency not enough

Need full fence to keep two lines apart

Can’t do constant
propagation (x = 1)

Can’t eliminate redundant
write (y=1)

Can’t optimize common
work in do_something and

do_something_else

NB: These are just illustrative examples

 Adding standalone fences to publish via a widget*:
// Thread 1 // Thread 2
g = 1;
widget* temp = new widget();
mb();
global = temp; y = 1;
x = g; temp2 = global;

mb();
temp2->do_something();
temp2->do_something_else();
y = g;

 Can avoid redundant load from global.
 Still all the same problems, except can optimize across temp2-> calls.

Need fence because g “might” exist –
data dependency not enough

Need full fence to keep two lines apart

Can’t do constant
propagation (x = 1)

Can’t eliminate redundant
write (y=1)

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 25

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

 Given two global variables char c; and char d; :
// Thread 1 // Thread 2
{ {

lock_guard<mutex> lock(cMutex); lock_guard<mutex> lock(dMutex);
c = 1; d = 1;

} }

 Q: Is there a race?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 26

kind of like inserting
“c=c;” here

 Given two global variables char c; and char d; :
// Thread 1 // Thread 2
{ {

lock_guard<mutex> lock(cMutex); lock_guard<mutex> lock(dMutex);
c = 1; d = 1;

} }

 Q: Is there a race? No ideally and in C11/C++11, but maybe today:
 Say the system lays out c then d contiguously, and transforms “d = 1” to:

char tmp[4]; // 32-bit scratchpad
memcpy(&tmp[0], &c, 4); // read 32 bits starting at c
tmp[1] = 1; // set only the bits of d
memcpy(&c, &tmp[0], 4); // write 32 bits back

 Q: So what?
 A: Oops, thread 2 would silently also write to c without holding cMutex.

 What about a global s of type struct { char c; char d; }?
// Thread 1 // Thread 2
{ {

lock_guard<mutex> lock(cMutex); lock_guard<mutex> lock(dMutex);
s.c = 1; s.d = 1;

} }

 Q: Is there a race?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 27

 What about a global s of type struct { char c; char d; }?
// Thread 1 // Thread 2
{ {

lock_guard<mutex> lock(cMutex); lock_guard<mutex> lock(dMutex);
s.c = 1; s.d = 1;

} }

 Q: Is there a race? No ideally and in C11/C++11, but maybe today:
 Say the system lays out c then d contiguously, and transforms “d = 1” to:

char tmp[4]; // 32-bit scratchpad
memcpy(&tmp[0], &c, 4); // read 32 bits starting at c
tmp[1] = 1; // set only the bits of d
memcpy(&c, &tmp[0], 4); // write 32 bits back

 Oops: Thread 2 would silently also write to s.c without holding cMutex.

 What about a global s of type struct { int c:9; int d:7; }?
// Thread 1 // Thread 2
{ {

lock_guard<mutex> lock(cMutex); lock_guard<mutex> lock(dMutex);
s.c = 1; s.d = 1;

} }

 Q: Is there a race?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 28

 What about a global s of type struct { int c:9; int d:7; }?
// Thread 1 // Thread 2
{ {

lock_guard<mutex> lock(cMutex); lock_guard<mutex> lock(dMutex);
s.c = 1; s.d = 1;

} }

 Q: Is there a race? Yes in C11/C++11.
 It may be impossible to generate code that will update the bits of c without

updating the bits of d, and vice versa.
 C11/C++11 say that this is a race. Adjacent bitfields are one “object.”

 There are many transformations. Here are two common ones.

 Speculation:
 Say the system (compiler, CPU, cache, …) speculates that a condition

may be true (e.g., branch prediction), or has reason to believe that a
condition is often true (e.g., it was true the last 100 times we executed
this code).

 To save time, we can optimistically start further execution based on that
guess. If it’s right, we saved time. If it’s wrong, we have to undo any
speculative work.

 Register allocation:
 Say the program updates a variable x in a tight loop. To save time: Load x

into a register, update the register, and then write the final value to x.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 29

The system must never invent a write to a variable
that wouldn’t be written to in an SC execution.

Q: Why?

If you the programmer can’t see
all the variables that get written to,

you can’t possibly know what locks to take.

 Consider (where x is a shared variable, and assume cond is consistent):

if(cond)
lock x

...
if(cond)

use x
...
if(cond)

unlock x

 Q: Is this pattern safe?

{
unique_lock<mutex> hold(mut, defer_lock);

if(cond)
hold.lock();

...
if(cond)

use x
...

} // as-if “if(cond) hold.unlock();”

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 30

 Consider (where x is a shared variable, and assume cond is consistent):

if(cond)
lock x

...
if(cond)

use x
...
if(cond)

unlock x

 Q: Is this pattern safe?
 A: Yes, it’s supported by the C11/C++11 MMs. But beware compiler bugs…

{
unique_lock<mutex> hold(mut, defer_lock);

if(cond)
hold.lock();

...
if(cond)

use x
...

} // as-if “if(cond) hold.unlock();”

 Consider (where x is a shared variable):
if(cond)

x = 42;

 Say the system (compiler, CPU, cache, …) speculates (predicts, guesses,
measures) that cond (may be, will be, often is) true. Can this be rewritten:

r1 = x; // read what’s there
x = 42; // oops: optimistic write is not conditional
if(!cond) // check if we guessed wrong

x = r1; // oops: back-out write is not SC

 In theory, No… but on some implementations, Maybe.
 Same key issue: Inventing a write to a location that would never be written to in

an SC execution.
 If this happens, it can break patterns that conditionally take a lock.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 31

 Here’s a much more common problem case:
void f(/*...params...*/, bool doOptionalWork) {
if(doOptionalWork) xMutex.lock();
for(...)

if(doOptionalWork) ++x; // write is conditional
if(doOptionalWork) xMutex.unlock();

}

 A very likely (if deeply flawed) transformation of the central for loop:
r1 = x;
for(...)

if(doOptionalWork) ++r1;
x = r1; // oops: write is not conditional

 If so, again, it’s not safe to have a conditional lock.

 Here’s another variant.
 A write in a loop body is conditional on the loop’s being entered!

void f(vector<widget>& v) {
if(v.length() > 0) xMutex.lock();
for(int i = 0; i < v.length(); ++i)

++x; // write is conditional
if(v.length() > 0) xMutex.unlock();

}

 A very likely (if deeply flawed) transformation of the central for loop:
r1 = x;
for(int i = 0; i < v.length(); ++i)

++r1;
x = r1; // oops: write is not conditional

 If so, again, it’s not safe to have a conditional lock.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 32

 “What? Register allocation is now a Bad Thing™?!”
 No. Only naïve unchecked register allocation is a broken optimization.

 This transformation is perfectly safe:
r1 = x;
for(...)

if(doOptionalWork) ++r1;
if(doOptionalWork) x = r1; // write is conditional

 So is this one (“dirty bit,” much as some caches do):
r1 = x; bDirty = false;
for(...)

if(doOptionalWork) ++r1, bDirty = true;
if(bDirty) x = r1; // write is conditional

 And others…

 Conditional locks:
 Problem: Your code conditionally takes a lock, but your system has a

bug that changes a conditional write to be unconditional.

 Option 1: In code like we’ve seen, replace one function having a
doOptionalWork flag with two functions (possibly overloaded):
 One function always takes the lock and does the x-related work.

 One function never takes the lock or touches x.

 Option 2: Pessimistically take a lock for any variables you mention
anywhere in a region of code.
 Even if updates are conditional, and by SC reasoning you could believe

you won’t reach that code on some paths and so won’t need the lock.

 This option is pretty useless if you have nested library calls.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 33

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

Software MMs have converged on
SC for data-race-free programs (SC-DRF).

Java: SC-DRF required since 2005.

C11 and C++11: SC-DRF default (relaxed == transitional tool).

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 34

Stores (a) are and (b) want to be
more expensive than loads.

(a) Stores do more work. (b) Loads outnumber stores.

Corollary: For SC atomics, we can tolerate
moderate expense on the store side,

but loads have to be fast
= very little overhead vs. ordinary load.

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 35

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

• Reads are not reordered with any reads.
• Writes are not reordered with any writes [some exceptions].

• Writes are not reordered with older reads.
• Reads may be reordered with older writes [different locations].

• Reads & writes not reordered with locked instructions [like xchg; …].

• Reads cannot pass earlier LFENCE and MFENCE.
• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE.

• LFENCE cannot pass earlier reads.
• SFENCE cannot pass earlier writes.
• MFENCE cannot pass earlier reads or writes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, §8.2.2
http://download.intel.com/products/processor/manual/253668.pdf

?
Q: This is great, right?

A: Yeeeeeah, sorta.

(major) 1. Yes, overhead on
loads must be low (good!)

(minor) 2. Cost of “that low”
is >restrictions elsewhere

a full barrier
(unfortunate…
really wanted

just ‘SC release’)

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

On x86, SC atomic store could also be “mov + mfence”
Q: Would it be a good idea for a compiler to choose that?

A: No.

(minor) 1. mfence is expensive, and anyway order semantics
should be attached to the memory op (not be standalone)

(major) 2. Everybody on a given platform has to agree on
the code gen, at least on compilation boundaries

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 36

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

Q: Why after the store?

A: Purely to prevent st.rel + ld.acq reordering, in case
there’s a ld.acq to another location coming up soon…

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 37

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

Q: On IA64, could a compiler emit SC atomic store as “mf + st”?

A: No, that’s broken.

(major) 1. ld.acq and st.rel are a package deal

(major) 2. That wouldn’t prevent st.rel + ld.acq reordering

(major) 3. Everybody on a given platform has to agree on the code
gen, at least on compilation boundaries

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

POWER ld sync; ld;
cmp; bc;
isync

st sync; st sync; _loop: lwarx; cmp;
bc _exit; stwcx.; bc
_loop; isync; _exit:

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 38

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

POWER ld sync; ld;
cmp; bc;
isync

st sync; st sync; _loop: lwarx; cmp;
bc _exit; stwcx.; bc
_loop; isync; _exit:

You can almost get
away with an
lwsync here…

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

POWER ld sync; ld;
cmp; bc;
isync

st sync; st sync; _loop: lwarx; cmp;
bc _exit; stwcx.; bc
_loop; isync; _exit:

Q: Why is this bad? and how bad?

A: Heavy cost on loads is anathema.

This instruction is half of the
primary reason why relaxed

atomics exist in C11/C++11

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 39

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

POWER ld sync; ld;
cmp; bc;
isync

st sync; st sync; _loop: lwarx; cmp;
bc _exit; stwcx.; bc
_loop; isync; _exit:

ARM v7 ldr ldr; dmb str dmb; str;
dmb

dmb; _loop: ldrex roldval,
[rptr]; mov rres, 0; teq
roldval, rold; strexeq rres,
rnewval, [rptr]; teq rres, 0;
bne _loop; isb

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

This is the other half of the
primary reason why relaxed

atomics exist in C11/C++11

ultra strong
= fully SC

ultra relaxed

SC-DRF

loads and stores

fences/barriers

x86/x64

S

IA64

S

POWER

L

Alpha

L L

S

ARM v7

L

S

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 40

Memory synchronization actively works against
important modern hardware optimizations.

Want to do as little as possible.

Software MMs have
converged on

SC for data-race-free
programs (SC-DRF).

Hardware MMs are
disadvantaged unless
SC acquire/release

are the primary
HW MM instructions.



atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 41

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

POWER ld sync; ld;
cmp; bc;
isync

st sync; st sync; _loop: lwarx; cmp;
bc _exit; stwcx.; bc
_loop; isync; _exit:

ARM v7 ldr ldr; dmb str dmb; str;
dmb

dmb; _loop: ldrex roldval,
[rptr]; mov rres, 0; teq
roldval, rold; strexeq rres,
rnewval, [rptr]; teq rres, 0;
bne _loop; isb

ARM v8 ldr ldra str strl

Load
Ordinary SC Atomic

Store
Ordinary SC Atomic

CAS

x86/x64 mov mov mov xchg cmpxchg

IA64 ld ld.acq st st.rel; mf cmpxchg.rel; mf

POWER ld sync; ld;
cmp; bc;
isync

st sync; st sync; _loop: lwarx; cmp;
bc _exit; stwcx.; bc
_loop; isync; _exit:

ARM v7 ldr ldr; dmb str dmb; str;
dmb

dmb; _loop: ldrex roldval,
[rptr]; mov rres, 0; teq
roldval, rold; strexeq rres,
rnewval, [rptr]; teq rres, 0;
bne _loop; isb

ARM v8 ldr ldra str strl

ARM CPUs: In Oct 2011, ARM announced new “SC load acquire” and “SC store
release” as a compulsory part of the ARMv8 CPU architecture (32-bit and 64-bit).

NB: Industry first. And very new – no announced silicon yet from ARM or partners.

ARM GPUs: Currently have a stronger memory model (fully SC). ARM has
announced their GPU future roadmap has the GPUs fully coherent with the CPUs,
and will likely add “SC load acquire” and “SC store release” to GPUs as well.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 42

ultra strong
= fully SC

ultra relaxed

SC-DRF

loads and stores

fences/barriers

x86/x64

S

IA64

S

POWER

L

ARM v7

L

ARM v8Alpha

L L

S S

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 43

Q: Is SC too strong?

Q2: Couldn’t we weaken
it “just a little bit”?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 44

Relaxed: Don’t do it.

Data point from Hans Boehm:
“I would emphasize that we’ve taken great care that without relaxed

atomics, ‘simultaneously’ really means what you thought it did.”

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 45

Relaxed: Don’t do it.

But (“argh,” wrings hands)

okay, there are a few legitimate:

(a) use cases (few and rare, so wrap them); and

(b) current hardware imperatives (so treat them as a stop-gap).

memory_order_relaxed

memory_order_acquire

memory_order_release

memory_order_acq_rel [*]

memory_order_seq_cst

memory_order_consume
+ [[carries_dependency]] + kill_dependency

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 46

 A word from the Standard (§29.3/1):
 memory_order_relaxed: no operation orders memory
 memory_order_release, memory_order_acq_rel, and

memory_order_seq_cst: a store operation performs a release
operation on the affected memory location

 memory_order_consume: a load operation performs a consume operation on
the affected memory location

 memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst:
a load operation performs an acquire operation on the affected memory
location

 Some combinations are nonsense. Example (§29.6/13):
C A::load(memory_order order = memory_order_seq_cst) […various flavors…]
Requires: The order argument shall not be memory_order_release or
memory_order_acq_rel.

 A handful of well-known patterns can benefit from judicious use of
non-SC atomic operations on some hardware.
 Examples: Event counters. Dirty flags. Reference counting.
 Degenerate example: Atomic variable accessed in a race-free manner

(i.e., in a region where it doesn’t need to be atomic because it’s not
shared or the program is synchronized in some other way).

 Wrap ’em: Keep the relaxed operations inside types that implement
the patterns.
 “Don’t let relaxed atomic op calls spread out into the callers.”
 Problem: It’s very subtle to define the library so that the “relaxed-ness”

is not detectable to the client.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 47

 Consider (count is atomic, initially zero):

 Threads 1..N: Incrementing. Main thread.

int main() {
while(...) { launch_workers();

::: :::
if(...)

++count; join_workers();

::: cout
<< count
<< endl;

} }

 Q: State exactly what ordering is needed on each atomic load and store.
 Hint: Thread exit happens-before returning from a join with that thread.

 Consider (count is atomic, initially zero):

 Threads 1..N: Incrementing. Main thread.

int main() {
while(...) { launch_workers();

::: :::
if(...)

count.fetch_add(1,memory_order_relaxed); join_workers();

::: cout
<< count.load(memory_order_relaxed)
<< endl;

} }

 Q: State exactly what ordering is needed on each atomic load and store.
 A: count incs/stores can be relaxed – it is not part of the comm between threads.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 48

 Consider (count is event_counter, initially zero):

 Threads 1..N: Incrementing. Main thread.

int main() {
while(...) { launch_workers();

::: :::
if(...)

++count; join_workers();

::: cout
<< count
<< endl;

} }

 Better: Use a type that encapsulates the desired semantics and hides the
relaxed memory ops.

 Consider (dirty and stop are atomic, initially false):

 Threads 1..N: Dirty setting. Main thread.

int main() {
while(!stop) { launch_workers();

if(:::) stop = true;
dirty = true; join_workers();

::: if(dirty)
clean_up_dirty_stuff();

} }

 Q: State exactly what ordering is needed on each atomic load and store.
 Hint: Thread exit happens-before returning from a join with that thread.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 49

 Consider (dirty and stop are atomic, initially false):

 Threads 1..N: Dirty setting. Main thread.

int main() {
while(!stop.load(memory_order_relaxed)) { launch_workers();

if(:::) stop = true; // not relaxed
dirty.store(true,memory_order_relaxed); join_workers();

::: if(dirty.load(memory_order_relaxed))
clean_up_dirty_stuff();

} }

 Q: State exactly what ordering is needed on each atomic load and store.
 dirty can be relaxed, relying on “join”’s ordering (doesn’t itself publish data).
 stop.load can be relaxed if setting stop doesn’t publish data.

 Consider (dirty and stop are atomic, initially false):

 Threads 1..N: Dirty setting. Main thread.

int main() {
while(!stop.load(memory_order_relaxed)) { launch_workers();

if(:::) stop = true; // not relaxed
dirty.store(true,memory_order_relaxed); join_workers();

::: if(dirty.load(memory_order_relaxed))
clean_up_dirty_stuff();

} }

 Q: State exactly what ordering is needed on each atomic load and store.
 dirty can be relaxed, relying on “join”’s ordering (doesn’t itself publish data).
 stop.load can be relaxed if setting stop doesn’t publish data.

 Q2: Is it worth it?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 50

 Consider (dirty and stop are dirty_flag, initially false):

 Threads 1..N: Dirty setting. Main thread.

int main() {
while(!stop) { launch_workers();

if(:::) stop = true;
dirty = true; join_workers();

::: if(dirty)
clean_up_dirty_stuff();

} }

 Better: Use a type that encapsulates the desired semantics and hides the
relaxed memory ops.

 Consider (refs atomic):

 Thread 1: Increment. Thread 2: Decrement.
(inside, say, smart_ptr copy ctor) (inside, say, smart_ptr dtor)

::: :::

control_block_ptr if(--control_block_ptr->refs == 0)
= other->control_block_ptr; {

++control_block_ptr->refs; delete control_block_ptr;

::: :::

 Q: State exactly what ordering is needed on each atomic load and store.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 51

 Consider (refs atomic):

 Thread 1: Increment. Thread 2: Decrement.
(inside, say, smart_ptr copy ctor) (inside, say, smart_ptr dtor)

::: :::

control_block_ptr if(control_block_ptr->refs
= other->control_block_ptr; .fetch_sub(1,memory_order_acq_rel) == 0) {

control_block_ptr->refs delete control_block_ptr;
.fetch_add(1,memory_order_relaxed);

::: :::

 Q: State exactly what ordering is needed on each atomic load and store.

 A: Increment can be relaxed (not a publish operation).
Decrement can be acq_rel (both acq+rel necessary, probably sufficient).

 Now let’s look at two threads who are the last to leave this object:

 Thread 1: Decrement 2->1. Thread 2: Decrement 1->0.

// A: use object :::

if(control_block_ptr->refs if(control_block_ptr->refs
.fetch_sub(1,memory_order_release) .fetch_sub(1,memory_order_release)
== 0) { == 0) {

// branch not taken delete control_block_ptr; // B

} }

::: :::

 Q: Is this code correct?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 52

 Now let’s look at two threads who are the last to leave this object:

 Thread 1: Decrement 2->1. Thread 2: Decrement 1->0.

// A: use object :::

if(control_block_ptr->refs if(control_block_ptr->refs
.fetch_sub(1,memory_order_release) .fetch_sub(1,memory_order_release)
== 0) { == 0) {

// branch not taken delete control_block_ptr; // B

} }

::: :::

 No acquire/release  no coherent communication guarantee that thread 2 sees
thread 1’s writes in the right order. To thread 2, line A could appear to move
below thread 1’s decrement even though it’s a release(!).

 Release doesn’t keep line B below decrement in thread 2.

 Consider (refs is atomic_ref_count):

 Thread 1: Increment. Thread 2: Decrement.
(inside, say, smart_ptr copy ctor) (inside, say, smart_ptr dtor)

::: :::

control_block_ptr if(--control_block_ptr->refs == 0)
= other->control_block_ptr; {

++control_block_ptr->refs; delete control_block_ptr;

::: :::

 Better: Use a type that encapsulates the desired semantics and hides the
relaxed memory ops.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 53

 The Double-Checked Locking (DCL) pattern is no longer broken.
 Using C++11 notation:

atomic<widget*> widget::instance = nullptr;

widget* widget::get_instance() {
if(instance == nullptr) { // 1: first check (ATOMIC)

lock_guard<mutex> lock(mutW); // 2: THEN acquire lock (crit sec enter)
if(instance == nullptr) { // 3: THEN second check (ATOMIC)

instance = new widget(); // 4: THEN create, THEN assign (ATOMIC)
}

} // 5: release lock (crit sec exit)
return instance; // 6: return pointer

}

 Key steps involve both atomicity and ordering.

 Alternative lazy initialization strategy.
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance.load() == nullptr) {

if(! create.exchange(true))
instance = new widget(); // construct

else while(instance.load() == nullptr) { } // or spin
}
return instance;

}

 Q: State exactly what ordering is needed on each atomic load and store.
 Hint: The fast case must perform at least a load-acquire of instance.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 54

 What if we make the exchange relaxed?
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance.load(memory_order_acquire) == nullptr) { // _acquire

if(! create.exchange_explicit(true,memory_order_relaxed)) // _relaxed (?)
instance.store(new widget(),memory_order_release); // _release

else while(instance.load(memory_order_acquire) == nullptr) { } // _acquire
}
return instance.load(memory_order_acquire); // _acquire

}

 Q: Is this correct?

 What if we make the exchange relaxed?
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance.load(memory_order_acquire) == nullptr) { // _acquire

if(! create.exchange_explicit(true,memory_order_relaxed)) // _relaxed (?)
instance.store(new widget(),memory_order_release); // _release

else while(instance.load(memory_order_acquire) == nullptr) { } // _acquire
}
return instance.load(memory_order_acquire); // _acquire

}

 A: No; e.g., could do some widget creation even if CAS fails – and worse.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 55

 What if we make the exchange acquire?
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance.load(memory_order_acquire) == nullptr) { // _acquire

if(! create.exchange_explicit(true,memory_order_acquire)) // _acquire (?)
instance.store(new widget(),memory_order_release); // _release

else while(instance.load(memory_order_acquire) == nullptr) { } // _acquire
}
return instance.load(memory_order_acquire); // _acquire

}

 Q: Is this correct?

 What if we make the exchange acquire?
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance.load(memory_order_acquire) == nullptr) { // _acquire

if(! create.exchange_explicit(true,memory_order_acquire)) // _acquire (?)
instance.store(new widget(),memory_order_release); // _release

else while(instance.load(memory_order_acquire) == nullptr) { } // _acquire
}
return instance.load(memory_order_acquire); // _acquire

}

 A: Yes, but there seems to be no benefit – same legal reorderings.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 56

 What if we notice the final store is redundant, and fix it?
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance.load(memory_order_acquire) == nullptr) { // _acquire

if(! create.exchange_explicit(true,memory_order_seq_cst)) // _seq_cst
instance.store(new widget(),memory_order_release); // _release

else while(instance.load(memory_order_acquire) == nullptr) { } // _acquire
}
return instance.load(memory_order_relaxed); // _relaxed (?)

}

 Q: Is this correct?

 What if we notice the final store is redundant, and fix it?
atomic<widget*> widget::instance = nullptr;
atomic<bool> widget::create = false;

widget* widget::get_instance() {
if(instance == nullptr) { // _acquire

if(! create.exchange(true)) // _seq_cst
instance = new widget(); // _release

else while(instance == nullptr) { } // _acquire
}
return instance; // _acquire

}

 A: Yes, but no benefit– compiler/HW can optimize redundant load anyway.

s/instance/(temp=instance)/

s/instance/temp/

s/instance/instance=temp/

s/instance/(temp=instance)/

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 57

It’s always legal to reduce
the set of possible executions.

Example: a=1; a=2;  a=2;
 “as if” thread always ran really fast, window never exercised.

OK because window wasn’t guaranteed to ever be exercised,
so no valid code in another thread could rely on it.

 Here’s the right way to spell lazy initialization in C++11.

widget* widget::instance = nullptr;

widget* widget::get_instance() {

static std::once_flag create;
std::call_once(create, [=]{ instance = new widget(); });

return instance;
}

 Remember we said “wrap ’em”?

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 58

 This also works.

widget& widget::get_instance() {

static widget instance;
return instance;

}

The difference between acq_rel and seq_cst is generally
whether the operation is required to participate in the

single global order of sequentially consistent operations.

This has subtle and unintuitive effects.

The fences in the current standard may be the most
experts-only construct we have in the language.

“
”

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 59

Relaxed: Don’t do it.

But (“argh,” wrings hands)

okay, there are a few legitimate:

(a) use cases (few and rare, so wrap them); and

(b) current hardware imperatives (so treat them as a stop-gap).

RAM

core core core core

3MB
L2 cache

3MB
L2 cache

core core

3MB
L2 cache

16MB
L3 cache

L1$ L1$ L1$ L1$ L1$ L1$
SB SB SB SB SB SBRECALL:

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 60

 July 2012 CACM:

Today’s multicore chips
commonly implement shared mem-
ory with cache coherence… Technology trends
continue to enable the scaling of the number of (processor) cores
per chip. Because conventional wisdom says that the coherence does not scale
well to many cores, some prognosticators predict the end of coherence.

This paper refutes this conventional wisdom… we predict that on-chip
coherence and the programming convenience and compatibility it
provides are here to stay.

http://www.cis.upenn.edu/acg/papers/cacm12_why_coherence_nearfinal.pdf

 Optimizations, Races, and the Memory Model

 Ordering – What: Acquire and Release

 Ordering – How: Mutexes, Atomics, and/or Fences

 Other Restrictions on Compilers and Hardware ( Bugs)

 Code Gen & Performance: x86/x64, IA64, POWER, ARM, ... ???

 Relaxed Atomics (as time allows)

 Coda: Volatile (as time allows)

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 61

volatile (Java, .NET) != volatile (C, C++)
==

atomic (C, C++)

volatile

“compiler-only” barriers

synchronizing operations
for talking to other threads
within the same program

using the same MM

unoptimizable variables
for talking to something
outside the program

(e.g., hardware registers,
setjmp safety, accelerator code,

memory at >1 address)…
and deliberately underspecified

mutexes

atomics

memory barriers

acquire/release

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 62

Inter-thread synchronization

Ordered atomic (atomic<T>)

External memory locations (e.g., HW reg)

 Unoptimizable variable (C/C++ volatile)

Atomic, all-or-
nothing?

Yes, either for types T up to a

certain size (Java and .NET) or
for all T (ISO C++)

No, in fact sometimes they cannot be

naturally atomic (e.g., HW registers that
must be unaligned or larger than CPU’s
native word size)

Reorder/invent/elide
ordinary memory
ops across these
special ops?

Some (1): in one direction

only, down across an ordered
atomic load or up across an
ordered atomic store

Some (2): one reading of the standard is

“like I/O”; another is that ordinary loads
can move across a volatile load/store in
either direction, but ordinary stores can’t

Reorder/invent/elide
these special ops
themselves?

Some optimizations are

allowed, such as combining
two adjacent stores to the
same location

No optimization possible; the compiler is

not allowed to assume it knows anything
about the type…

…not even v = 1; r1 = v; v = 1; r1=1;

Don’t write a race condition or use non-default
atomics and your code will do what you think.

Unless you:

(a) use compilers/hardware that can have bugs;

(b) are irresistably drawn to pull Random Big Red Levers; or

(c) are one of Those Folks who long to take over the gears in the Machine.

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 63

 Q: Does your computer execute the program you wrote?

 Hey, sequential consistency (SC) seems great!
“… the result of any execution is the same as if the reads and writes
occurred in some order, and the operations of each individual
processor appear in this sequence in the order specified by its
program”

 But chip/compiler designers can be annoyingly helpful:
 It can be (much) more expensive to do exactly what you wrote.

 Often they’d rather do something else, that could run (much) faster.
 Common reaction: “What do you mean, my program is too slow,

you’ll execute a different program instead…?!”

atomic<> Weapons:
The C++ Memory Model and Modern Hardware

Herb Sutter

Date updated: December 23, 2013
Page: 64

Programmer (Tom Cruise): Kernel hardware, did you reorder the code I wrote?

Judge: You don’t have to answer that question.

Compiler/Processor/Cache (Jack Nicholson): I’ll answer the question.
You want answers?

P: I think I’m entitled to them.

C/P/C: You want answers?

P: I want the truth!

C/P/C: You can’t handle the truth. Son, we live in a world that has
memory walls. And those walls have to be guarded by men with
optimizers. Who’s gonna do it? You? You, app developers?

I have a greater responsibility than you can possibly fathom. You weep
for your program’s ‘corruption’ and you curse the optimizer and
hardware. You have that luxury. You have the luxury of not knowing
what I know: that your program’s ‘corruption’, while tragic, probably
saved cycles. And my existence, while grotesque and
incomprehensible to you, saves cycles.

You don’t want the truth because deep down, in places you don’t talk
about at ship parties, you want me to rewrite your code. You need me
to rewrite your code. We use words like throughput, speed,
performance. We use these words as the backbone of a life spent
executing something. You use them as a punchline.

I have neither the time nor the inclination to explain myself to a
developer who builds and ships under the blanket of the very
performance that I provide, and then questions the manner in which I
provide it. I would rather you just said thank you and went on your
way. Otherwise, I suggest you pick up an escape analyzer and unroll
your own loops. Either way, I don’t give a —— what you think you are
entitled to!

Programmer: Did you reorder the code I wrote?

Compiler/Proc/Cache: I did the job you sent me to do.

Programmer: Did you reorder the code I wrote?

